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Naphtali Rishe, David Barton, and Mario Sanchez
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Florida International University
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(305) 348-2025, rishen @fiu.edu

We are developing a prototype massively parallel database management

system with applications to earth sciences. Our system will enable the highly
efficient accumulation and retrieval of vast amount of general, scientific, and
spatial data, utilizing a semantic/object-oriented approach to database
management. One type of data in this system is a generalized spatial function
— a function from a Cartesian product of several continuous and/or discrete
domains into a Cartesian product of continuous domains and/or discrete
domains and/or sets of semantic facts. This paper addresses issues of data-
base storage of such functions, their querying, and visual presentation of
results as multi-dimensional objects, particularly superimposition of two spa-
tial functions in a 3-D display.
Keywords : semantic databases, spatial data, high performance, massive paral-
lelism, scientific data, earth sciences databases, object-oriented databases, spa-
tial queries, visualization, generalized spatial functions, spatial function super-
imposition.

1. INTRODUCTION

Earth science database applications have three essential needs:

» strong semantics embedded in the database so as to effectively handle the complexity of
information

» storage of spatial, image, and other non-conventional data

» very high performance facilitating massive data flow

This research was supported in part by NASA (under grant NAGW-4080), ARO (under BMDO
grant DAAH04-0024), NATO (under grant HTECH.LG-931449), NSF (under grant CDA-
: 9313624 for CATE Lab), National Park Service (CA-5280-4-9044 and CA5280-0-9018) and State
i of Florida. '
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Abundant evidence demonstrates that semantic/object-oriented databases can better satisfy
the first two needs than relational databases. We are developing a highly parallel database
machine based on the semantic/object-oriented approach that will also satisfy the third need
— high performance.

Our research aims to significantly improve the usability and efficiency of highly parallel
database computers and machine clusters (tightly networked groups of machines). Our
prototype database management system will have substantial advantages over current
database machines, due to:

* Usability. Our object-oriented system is based on the Semantic Binary Model of
databases, unlike most current database systems, which are mainly based on the
Relational Model. The use of semantic models ensures better logical properties:
friendlier and more intelligent generic user interfaces based on the stored meaning of the
data, comprehensive enforcement of integrity constraints, greater flexibility, and
substantially shorter application programs.

Semantic databases represent information as a collection of objects and relationships
between these objects. The Semantic Binary Model of databases is a semantic model
with object-oriented features [Rishe-92-DDS]. Data items related to objects can be of
arbitrary size, multi-valued, or missing entirely. We have applied this approach to
various types of data, including scientific and multi-media data. Semantic objects are
not required to be identified by keys. An object may belong to many categories at the
‘same type. Inclusion of categories determines inheritance of properties.

* Efficiency. Our system will be more efficient than existing database machines. This
higher-efficiency goal can be attained by exploiting the system’s understanding of the
data’s semantics and due to the higher abstraction level. The algorithms and prototype
system that we are developing are highly efficient for both small and massive numbers
of processors equipped with separate memories and storage devices. In particular, the
use of the semantic model allows better exploitation of parallelism, by providing a
means of distributing data among these processors in a way which is invisible to both
database programmers and database users. We are developing algorithms and prototype
software for the outer levels of the system (intelligent query processors and optimizers,
content accessibility), as well as inner-level storage management. These algorithms will
then be combined into one high performance system, with a very efficient representation
of temporo-spatial and fuzzy data. Data is stored in highly-compressed form while
allowing efficient and flexible retrieval.

This paper presents our theory and algorithms associated with one of the data types in our
system: a generalized spatial function — a function from a Cartesian product of several
continuous and/or discrete domains into a Cartesian product of continuous domains and/or
discrete domains and/or sets of semantic facts. For example, ocean temperature is a function
fXXYXZXTx0—>RZx Factsets, where X X Y X Z X T is the space-time continuum and
O is a discrete set of observation stations that reported measurements. Thus,
f(x.,y.z,t,0)=(s,i), where s is a segment of temperatures (e.g., 50 degrees plus or minus 0.01
degrees) and i is a set of semantic facts. Another example is remote sensing (photography) of
ocean color by the SeaWiFS satellite.




The spectrum of problems we have addressed concerning this data type includes:

1. Highly-efficient basic queries, including "inverse" queries (e.g., "Where is the
temperature of about 70 degrees?")

2. Compact lossless storage

. Compact lossy storage, particularly by approximating function values.

. Efficient complex queries
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5. Load balancing between processors and storage units

6. Visual presentation of query results as animated movies.
7.

Visual presentation of query results containing two spatial functions of the same
space as a 3-D overlay. For example, ozone layer thickness represented as elevation is
superimposed with temperature represented as color.

2. RELATED WORK

Spatial and scientific databases have attracted the attention of many researchers. The
proper statistical analysis of spatial and spatiotemporal data is critical to the success of any
scientific study which uses such data. Cressie [Cressie-91] provides an extensive coverage of
the current theories and methods used for spatial analysis, with some discussion of
spatiotemporal methods. Our system will support these types of analyses, although the
statistical procedures themselves are not part of our project.

A long-term goal of the JGOFS project [Flierl&al.-93] is to establish strategies for
observing changes in ocean biogeochemical cycles in relation to climate change. A
distributed approach is used in that project, where the data are not gathered into a central
archive but rather reside at the originator’s site. An object-oriented database system is
developed for this purpose.

It is necessary to develop management tools that offer both the functionality required by
a scientific environment and an interface that feels natural and intuitive to the non-expert
[Toannidis&al.-93]. A desktop Experiment Management System has been proposed as the
interface between the experimental scientists and the data [loannidis&Livny-92].

The use of "layered database technology"” to support scientific applications is suggested
in [Shoshani-93]. It allows to provide interfaces to various levels for different scientific
applications.

Research has been done on object-oriented data management systems for physical
scientists [Hachemé&al.-92]. The current goal of the Gaea project is to construct a prototype

which permits integration of heterogeneous and complex datatypes in geography
[Hachemé&al.-93].

One of the ways to provide database support for high performance scientific applications
is to create a special language for describing, finding, and accessing data by applications
programs [Pfaltz&French-93]. The main goal is to interface many different computing
environments to a common, persistent data space [Pfaltz&al.-88].
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[Smith&al.-93] considers models using a large and heterogeneous collection of datasets.
The problem of coupling several complex models arises in the application of spatially-
distributed models of water, sediment and solute transport in the Amazon basin. A high-level
Modeling and Database Language (MDBL) is suggested.

The need of using data from different sources arises in scientific applications. For
example, the use of object-oriented databases for this purpose in the domain of computational
chemistry is discussed in [Cushing&al.-92], and [Cushing&al.-93].

The SEQUOIA 2000 project ([Stonebraker-93], [Stonebraker&al.-93]) is designed for
global change research. Management, storage and access to massive amount of data, are
considered in that project.

Some interesting problems appear in medical applications of database technology. One
of them is management of large repositories of image, text, and scientific information
generated by academic medical research centers. Another one is the integration of different
independent database systems which already exist in many specialized branches of medicine.
These problems as well as the extension of traditional object-oriented data models into the
temporal domain for accurately representing the data stored in medical image databases are
considered in [Cardenas&al.-93] and [Chu&al.-92]. Visualization methods for query results
and handling of 3-dimensional spatial data sets created from 2-dimensional medical images
are investigated in the QBISM project [Arya&al.-93].

3. GENERALIZED SPATIAL FUNCTIONS
This section defines a new data type: a generalized spatial function.

Consider spatial functions that map a Euclidean space into values: f: R" - R™
(where R is the continuum of real numbers). For example, ocean temperature is an R* —R
function of latitude, longitude, depth, and time.

In some spatial applications, the function’s domain may include discrete dimensions.
For example, if Observers is a discrete set of observing devices then the perceived ocean
temperature is R* x Observers —R .

In some spatial applications, each point in space is assigned not only certain values but
also other arbitrary information, which can be generalized as a set of facts. Let Factsets be
the set of all finite sets of facts. Let D be a discrete domain. A generalized spatial function:

f: R™ x D" — R¥ x D? x Factsets’
where m>0, n>=0, k>=0, p>=0, are integers, and j is 0 or 1.

For example, if facts can be observed as associated with certain space-time regions then
the ocean temperature is: f : XxXYXZxTimexObservers—TemperaturexFactsets

In observation of natural phenomena one needs to distinguish between raw and
processed/interpreted views. A raw view is a discrete set of measurements as reported by
measurement devices. Raw views contain noise. Further, raw views are typically expressed
in terms of the activity of the measuring devices rather than in terms of the actual coordinates
of the observed phenomena, i.e. the coordinates are not geo-calibrated. Processed /interpeted
views attempt to estimate and approximate the actual attributes of the observed phenomena,
by what we call generalized spatial functions. The broad community of users of spatial data
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needs only processed views. A small group of scientists uses the raw views to derive
processed views by applying various theories. These scientists keep improving and fine-
tuning such theories. Consider, for example, the problem of translating a satellite’s motion
coordinates and device angles into the Earth surface coordinates of the measured
phenomenon. The techniques of doing so, and their precision, are open for improvement,
especially in the polar zones. The raw spatial data cannot be smoothened and must be
available in full detail. The processed spatial data represents an estimation of the natural
phenomenon, and, therefore, has properties of typically continuous functions defined over the
space continuum. The raw spatial data may coexist in a database with processed data, but
different techniques may be used for storage and retrieval of the two types.

As an example, consider the ocean color observations to be made by the NASA
SeaWiFS satellite. Figure 3-1 represents the semantic schema that we use in our
experimental database to store and access raw SeaWiFS data. Actually, this not the
immediate satellite data but rather derived by a straightforward algorithm, not involving the
intelligence and ambiguity of estimating the actual color in ocean-surface coordinates.

SATELLITE
STATUS

Position: R"3
Velocity: R"3
PIXEL A Attitude: R"3
Sensed-values: R°8 b.y Time: Dat‘e-tin'ze
Scan-coordinate: Integer (m.m) I Instr;ment.. gtr{ng .
Orbit-propagation-coordinate: Integer telemetry- ‘.m_‘m' iring m.m
Gain: String
Timedelay/integration: String
Mode: 'Earth’,’Solar’
Angle, Tilt: Number
Mirror-side: Boolean

Figure 3-1. SeaWiFS: Logical Schema of Unpacked Raw Data. Only some
pixels directly correspond to some status records; for each such status record
only some of the data from the list is available.

The schema of Figure 3-1 uses the semantic modeling notation of [Rishe-92-DDS], which is
briefly explained here. The category PIXEL is the set of pixels, in orbital coordinates, for
which  color recording is taken. The attributes Scan_coordinate  and
Orbit_propagation_coordinate are of type Integer and define a matrix of pixels. For each
pixel, there are 8 color values for 8 different bandwidths (they are taken by eight devices on
board). This vector of eight values is represented by the attribute Sensed —values of type RS
The category PIXEL contains the actual measurements as taken. What geographical points
on the ocean surface does a given pixel correspond to, and what is the real color of those
points, is an issue of non-trivial and imprecise analysis. Such analysis is aided by the other
information in this schema. Some pixels are associated with satellite status data by the
relation BY. This relation is many-to-many. It is not a total relation, meaning that some
(actually, most) pixels do not have any satellite status data explicitly associated with them
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(but such data can be inferred from that associated with nearby pixels; we say that a status
record is explicitly associated with a pixel if the record was transmitted by the satellite
immediately before the pixel). Since there is a variety of satellite status records, transmitted
at various times, each status record may contain some, but not all, of the following
information. The Position and Velocity attributes are vectors of three numbers each,
representing the satellite’s position and velocity. Angle and Tilt refer to the aiming of the
lens. Their type is Number, referring to any number representable by a finite string of digits.
We do not have any precision or magnitude restrictions on real numbers [Rishe-92-IB].
Telemetry_data is a multi-valued attribute of type String, i.e. one satellite status record can
have a set of strings of telemetry data. Mode is an attribute of an enumerated type. Time is
an attribute of the type Date-time, implemented as arbitrary numbers, standing for the number
of seconds since a certain date-time ¢, (It allows any decimally-expressible fraction of a
second.)

Figure 3-2 is the semantic schema of processed SeaWiFS data, further interpreted to
expand the discrete measures to be reflective of the space-time continuum that they represent.
It defines generalized spatial function over the three-dimensional continuum of ocean surface
latitude longitude and time. Most users are interested only in this interpreted information, not
in the raw data. The following section discusses an efficient implementation of this "infinite"
data structure.

POINT

latitude: Number
longitude: Number
at: Date-time
Values: R°8

Figure 3-2. SeaWiFS: Logical schema of
interpreted data. There is an infinite
continuum of points.

4. PHYSICAL STORAGE OF GENERALIZED SPATIAL FUNCTIONS

4.1. Goals

Logically, spatial functions are defined over a continuum. At the physical level, we represent
spatial functions by a finite set allowing approximate interpolation of the function. We notice
that the spatial function itself represents an estimation of a natural phenomenon, derived from
some finite raw data. Therefore the values interpolated from its physical representation need
not be more precise than said estimation.

As an example of a characteristic problem and its solution, let us consider ocean
temperature. The ocean can be regarded as a four-dimensional Euclidean space of longitude,
latitude, depth, and time. Thus, temperature T is a function T(x,y,z,t). Additionally, there
is a discrete dimension of observation sources, which may disagree between them. Thus, the
temperature function may have five arguments: T(x,y,z,t,s). If & is the precision of
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knowledge of temperature at a point, then the assertion of the database is that the actual
temperature is between T(x,y,z,t,s)-0 and T(x,y,z,t,s)+3. In some application, & is not a
constant but depends on the point, in which case we have generalized spatial functions
producing for each point a segment of possible temperature values:
T(x,y,z,t,s)t8(x,y,z,t,s). If the database represents this temperature knowledge fully, we
call it a fully lossless representation of the interpreted spatial data. If this knowledge is
approximated in the database by a value segment T°(x,y,z,t,s )XA containing the segment
T%3 and A is not substantially greater than 3, then we call this representation approximately
lossless. In this case, the difference A-d is the degree of approximation. As will be
discussed below, we can vary the degree of approximation as a function of the required
compactness and efficiency of the database. If for some points (x,y x,t,s), T°(x,y,Z,t,8) is
outside the segment T'(x,y,z,¢,s )10, then the representation is lossy. When the generalized
spatial function is continuous (and it typically is for interpreted natural phenomena, except for
boundary conditions) we can have a highly compact and efficient fully- or approximately
lossless representation, as will be shown later in this paper.

The following are examples of some queries that are asked about this function:

(Q ) Find the temperature for a given 5-dimensional point (whether it is a point of actual
measurement or interpolated). This is the most basic query.

(Q,) a more complex query: find the temperature of a four-dimensional space-time point
independent of the observation source, obtained by weighing the different sources according
to their known reliability, etc.

(Q5) find the average temperature of a given arbitrary segment of space-time body.
(Q 4) delineate space-time ranges where the temperatures are between given ¢ and ¢,.

Logically, we assume that we have a virtual infinite database containing all the observed
measurements and the interpolated points. The following specifications delineate this virtual
database’s schema, graphically depicted in Figure 4-1.

[C] OBSERVATION-SOURCE — category (The set of entities measuring ocean
temperature)

[0 description — attribute of OBSERVATION-SOURCE, range: String (1:1) (The
identifying description of an observation source)

reliability — attribute of OBSERVATION-SOURCE, range: 0..1.00 (m:1) (A
number between 0 and 1)

POINT-VALUE — category (The infinite set of all pairs of space-time points and
their possible temperature values)

point — attribute of POINT-VALUE, range: R4 (m:1) (Vector in space-time)

temperature — attribute of POINT-VALUE, range: Number (m:1) (In degrees
Kelvin)

produced — relation from OBSERVATION-SOURCE to POINT-VALUE (m:m)

(A many-to-many association between point-values and observation sources that
collected raw data which upon processing and interpretation yielded the point-
value)

O oo 0O 0O




OBSERVATION
SOURCE produced POINT VALUE
iption: Stri : . point: R°4
e (o) temperature: Number

Figure 4-1. Infinite virtual database

4.2. Linear Hyperquadrant Data Structure

The infinite logical view of Figure 4-1 can be mapped into a compact actual database of

Figure 4-2. Later in this paper we will introduce further refinements of compactness and
efficiency of this database.

In the database schema of Figure 4-2 we represent the space-time continuum as a
hexadecimal tree of hyper-quadrants. We utilize the well-known theory of linear quad-trees
of [Gargantini-82], which we extend to multi-dimensional generalized spatial functions and

adapt to semantic databases. Our further refinements of this data structure are discussed in
the next section.

Let 6 be the precision of knowledge of the generalized spatial function and A be the
desired precision of knowledge representation in the database, A=8. In order to simplify this
discussion, we will use the terms of the above temperature examples (whereby extending the
results to an arbitrary generalized spatial function with an arbitrary number of dimensions
will be obvious). Further, we will assume that A and & are constants over the observed

space-time. Generalization to the case when they are varying functions over the space-time is
easy.

First we define the partitioning of a four-dimensional continuum into a tree of hyper-
quadrants labeled by hexadecimal strings. The relevant space-time is bounded and, therefore,
it can be embedded in a huge hyper-rectangle, S. Now, let us halve all the edges of S, thus
partitioning S into 16 hyper-quadrants touching each other at the center of gravity of §. Let
us label them by the 16 hexadecimal digits: 0, 1, 2, 3,4, 5,6,7,8,9,a,b, ¢, d, e, f. Each of
them can in turn be partitioned into 16 smaller hyper-quadrants, denoted by two hexadecimal
digits, e.g. #7 is partitioned into 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, Ta, Tb, 7Tc, 7d, Te, 7.
Each of them can be further partitioned, and so on. The inclusion between hyperquadrants is
defined by their label, so no pointers would be necessary: hyperquadrant %, contains
hyperquadrant £, if and only if label(k ) is a prefix of label(k ).

We note that a mathematical point (X,y,z,t) in space-time is a hyperquadrant of zero size;
its label is an infinite hexadecimal string microhyperquadrant (x,y ,z ,t). (We are introducing
this only for the purpose of analysis below, not for actual storage in the database).

Now, a four-dimensional temperature function of space-time T:R* — Rcan represented,
up to the desired degree of precision A, as a finite set of non-overlapping hyper-quadrants of
various sizes by the following recursive process: if the function varies on a given
hyperquadrant /| more than allowed by the desired precision A, then partition /| into sixteen
smaller hyperquadrants.
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OBSERVATION
SOURCE produced HYPERQUADRANT
iption: Stri . . label: HexadcmlString
desrceZZZ:leyStomjlgool A (Z:m) average-temperature: Number dgr-Kelvin

Figure 4-2. Finite representation of a generalized spatial function
Temperature by a tree of hyper-quadrants

Now, the query O becomes:

T(x,y,z,t,s)= get m. TEMPERATURE where (s PRODUCED m and m.LABEL is a prefix of
microhyperquadrant (x,y .z ,t)) )

To allow efficient computation of queries like Q ;, the hyperquadrants of a given source
5 can be stored at the physical level as a subfile HYPERQUADRANTS([label, temperature].
This subfile is a B+-tree ordered by labels. The following explains why @ can be resolved in
just one access to the disk.

The index level of the B+-tree contains the first labels of each physical block of records.
Therefore, the index level is several orders of magnitude smaller than the data level. For
example, if 1000 records [label,temperature] fit in each block, then the index level is 1000
times smaller than the data level of the B+-tree. Thus, we can normally assume that the index
level resides in the memory (if this assumption were invalid, then the number of disk accesses
to perform @, would go from one to just two accesses). Since for s the space-time was
partitioned into a set of disjoint , varied-sizes hyperquadrants, there is only one hyperquadrant
whose label I, is a prefix of microhyperquadrant(x,y,z,t). The label I, is thus the
lexicographically greatest stored label less than microhyperquadrant (x,y,z,t). This record
must reside in the data block whose first label [ is the lexicographically greatest index-level
label below microhyperquadrant (x,y,z,t). Thus the index level will point to exactly one
block containing the answer to query Q ;. Since one cannot possibly resolve a query requiring

information from a disk in less than one disk access, the above-described algorithm is
optimal.

This data structure also allows highly efficient computation of queries 0, and Q5. To
efficiently resolve query Q,, which delineates areas having a temperature in a given range ¢,
to t,, we store an inverse index subfile INVERSE[temperature,label] which is a B+-tree
ordered by temperature. The answer to Q, is the set of records INVERSE{t,l] where
t1—A<t<t,+A. This is the contiguous fragment of the file INVERSE specified as a B-tree
range from ¢;—A to t,+A. If the number of records in the output is substantially less than can
fit into one data block then the query can normally be resolved in just one disk access. If the
number of records in the output is large enough to fill » blocks then the query can normally
be resolved in n+1 disk accesses. This is either the optimum or very close to the optimum.

We should note that Temperature, like all the numbers in our Semantic DBMS is of
arbitrary precision and magnitude, and must be represented by a compact bit string of varying
length. Further, in order to allow B-tree indexing and certain other operations, these
varying-length strings must be lexicographically orderable preserving the meaningful order of
numbers. To accomplish this, we use the order-preserving varying-length compact number
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encoding defined in [Rishe-92-IB].

All the subfiles of the database are placed in one database file. In the high-performance
version of our system, this file is partitioned between many disks and processors.

4.3. Polynomial Approximation Data Structure

Still further reduction in the storage of a generalized spatial function, e.g. the
Temperature function, can be obtained if we sample the space-time not into very small bodies
of approximately constant temperature (i.e. varying within a given A only) but into larger
bodies whose temperature can be represented by an analytical function. For such bodies we
will store the average temperature as well as an optional polynomial describing the offset in
terms of the points’ coordinates. This can also achieve a fully lossless representation without
a great storage overhead.

Consider a generalized spatial function T'(x,y,z,t)+8(x,y,z,t), representing interpreted
(processed) knowledge of a natural phenomenon, e.g. the ocean temperature. Since our
knowledge of Nature is never exact, we can normally assume that 8>0. We produce a fully
lossless representation of this function by a finite set of non-overlapping hyper-quadrants of
various sizes by the following recursive process:

Let h be a hyperquadrant; let center(h) be its center point; let average(h) be the
average temperature of £, defined as:

J T(x,y ,z .t )dxdydzdt
(x,y.z,t)Eh

volume (h)

Let P, : R* R be a minimal-degree polynomial function of the four-dimensional
space such that:

(*) ¥x,y.,z.t)eh:|(average (h)+P,((x,y ,z ,t)—center (h)-T (x,y,z,t <8 (x,y,z,t)

For a polynomial P, let length (P ) be the sum of lengths of representations of the
coefficients of the polynomial P. For example,
length (<2x 24135 178>)=length (2)+length (1.35178)=1+6=7.
Let Maxlength<eo be a global constant limiting the length of polynomials we wish to store in
the database.

average (h)=

Recursive procedure on hyperquadrant & : If a polynomial P, satisfying (* ) does not
exist, or cannot be found efficiently, or if the length of minimal such polynomial exceeds
Maxlength, then partition the hyperquadrant 4 into 16 contained hyperquadrants and
recursively apply the procedure to each of the 16 hyperquadrants.

To further reduce the database’s size, we combine hyperquadrants into clusters if they
can use the same polynomial. A cluster is one hyperquadrant or a set C of hyperquadrants
(typically adjacent but not necessarily of the same size) with a polynomial P such that:

Vhe C: V(x,y 2 t)eh:|(average (C )+Ps((x,y ,z ,t )—center (C))-T (x,y ,z ¢ )< 8(x,y .z ,t)

Y center(h) Y. average (h)xvolume (h)
heC heC
h t )= , C)=
where center (C)="_ imaliy(C)’  'e728¢(€) 3 volume (h)

heC
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Figure 4-3 defines a schema of the resulting compact and efficient database.

OBSERVATION CLUSTER
SOURCE produced

hyper-quadrant: HexadcmiString many-to-many
description: String 1:1 (many-to-many) average-temperature: Number dgr-Kelvin
reliability: 0..1.00 offset-function: Polynomial

Figure 4-3. One cluster has several hyper-quadrants and an optional offset
interpolating function

Further, to avoid storing the polynomial in every cluster, we can have a global default linear
polynomial, which will be implied for those clusters for which no polynomial has been
assigned in the databases. Now, Query Q| becomes:

T(x,yz,t,s)=

get m.AVERAGE-TEMPERATURE+ (m.OFFSET-FUNCTION)((x,y,z,t) — center(m))

where s PRODUCED m and m has a hyper-quadrant h which is a prefix of the hexadecimal
string microhyperquadrant (x ,y .z ,t).

In our database implementation, the above query will normally be resolved in just two disk
accesses, assuming there is only one observation source covering the point (X,y,z,t).

Queries 05, O3, and Q4 are also very efficient in this database.

4.4. Visualization

Generalized spatial functions can represent information stored in the database as well as
information contained in the output of a query. Here are some examples. The
aforementioned query Q4 (to find segments of space-time for a given temperature range ¢, to
t5) produces a generalized spatial function. The identity query Q copies an entire stored
spatial function into output. Query Qs produces the temperature function T : R* R fora
given observation source s. Query Q¢ produces source-averaged surface temperature data for
the Caribbean Sea surface, Tr,,;, : R> =R . Query Q- produces both surface temperature
and ozone thickness data, (Temperature,Ozone): R> — R2 Query Qg produces a discrete
spatial function which for each city and each month gives the monthly average temperature,
Citytemp: Citiesx{1..12}—>Temperature. Query Qq produces a function f g : Cities x Time —
Temperature X Ozone X Factsets. This function, for every city ¢ and every moment in time ¢,
gives the temperature, the ozone thickness, and the set of facts describing the events that were
happening in the city at time ¢ (i.e. events that started at or before ¢ and ended after t). Here,
Cities is a discrete domain and Time is a continuum. Query Qo produces uninterpreted
SeaWiFS measurements in discrete orbital coordinates, together with information on satellite
and lens positioning when making the measurements:
SW: OrbitPropagation X Scan X Time X Band — Color x Factsets

In this section we discuss two methods we employ for visualization of such query
results. The first one, animation, in not conceptually novel, but is interesting especially in
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terms of performance ramifications in our system, as well as certain presentation
enhancements that we introduce. The second, novel, method is the 3-D function
superimposition.

4.4.1. Animation

Consider a query whose output is a three-dimensional function f: R —R , eg.
temperature (latitude ,longitude ,time ).

We can display this function by mapping any two of the dimensions on the screen and
translating the third dimension into a frame sequence. This can be seen as a movie with
VCR-like controls — speed, pause, direction, rewind, etc. — as well as with zoom control.

Our systems also provides the user with pull-down menus or buttons to dynamically
select a geographical display projection type for spatial functions. The projection types
currently supported are: mercator, homolographic, stereographic, sinusoidal, orthogonal, and
orthographic.

To accommodate factsets in the visual presentation, e.g. the factsets produced in queries
Qg and Q 4, we will be able to perform the following: when the user clicks at a point on the
screen the system displays facts concerning that point.

When a query produces a spatial function of more than 3 dimensions, e.g. f: R -> R, the
viewing user will have buttons to dynamically freeze any dimensions and select two screen
dimensions and one frame-sequence dimension.

Efficient support of animation requires very fast execution of spatial queries by the
database server and very fast delivery of the results to the user. In our prototype, a cluster of
database server machines is connected to user workstations via an ATM network, capable of
simultaneously delivering 150 megabits per second to each user. The animation was
implemented by David Barton, Elma Alvarez, and Martha Gutierez. Illustrations 1 through
11 show snapshots of the user’s screen.

4.4.2. Function superimposition

Here, we would like to describe a novel visualization method that we employ: spatial function
superimposition.

Consider a query whose output consists of two spatial functions of the same two-
dimensional subspace. Example: the ozone layer thickness and the ocean temperature of a
particular region on a particular date. The user posing this query desires to see correlation
between the two functions. In visualization of this query we represent this output as a virtual
reality 3-dimensional image, where the first function is mapped into elevation and the second
into color. In our prototype system, the user can explore this image using virtual reality
goggles: the user wearing such goggles can look at the image at various angles and positions.
The computer senses the angle and the position of the person viewing the image via infra-red
signaling, which the system uses to display appropriate views in relation to the user’s
position. The depth illusion that the system implements works by displaying a stereo image:
two quickly alternating images, each of which corresponds to the particular image that each
eye would see if the query visualization were a 3-dimensional object in the real world. The
goggles complete the effect by synchronously blocking the view of one of the eyes with an
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LCD lens, fooling the brain into thinking that it is a real 3-dimensional object. A user without
such goggles can still benefit from this data visualization method by rotating the image on the
screen and looking at various pseudo-3D projections — an example of this is in the last
THustration 12.

Consider now a query whose output is a pair of spatial functions of a three-dimensional
subspace (F :R? = R?. Example: the ozone layer thickness and temperature of an ocean
region during a given time interval — a query posed by a user interested to see how the
temperature/ozone correlation changes in time. We present F as a sequence of functions F,:
R? > R? Foreacht, F ; is viewed as a 3-D relief. The sequence of images F, is viewed as
an animated video with VCR-like controls (Speed, play forward, rewind, frame by frame
viewing, etc.), as well as with image controls (zoom, viewing angle, etc.).

Iustration 12 depicts F, a snapshot of F at a time ¢j — we froze the time to render a
static 3-D image. In this example, the continents are colored brown, the ocean is colored
from blue to red according to the surface temperature, and the ozone thickness is mapped into
the relief’s elevation. The ozone layer thickness happened to be measured when the hole in
the ozone layer is apparent in the Antarctic region, as seen by a sharp slope at the left side of
the snapshot. (This is a snapshot of a relief built on top of an orthogonal projection of the
Earth; the image has been rotated and put in a perspective as if viewed from the Pacific Ocean
westwards — this way the relief is clearly seen even without the help of the aforementioned
3-D goggles.)

The superimposition visualization program was written by Louis Florit. It is a part of
the query visualization subsystem of our prototype semantic spatial database management
system.

5. CONCLUSION

Our prototype for a massively parallel database management system is designed to
efficiently realize complex queries on multi-dimensional spatial-temporal data and efficiently
deliver the results to the user in an intelligible visual perspective. These direct and inverse
relations between varied measures and geolocated objects are integral to deciphering and
understanding Nature. The multi-dimensional visualization of highly intricate relations over
massive amount of data aids in the rapid interpretation of complex and extended measures by
domain scientists. We are certain that these features of our system are indispensable in
effectively analyzing the enormous and imposing amount of scientific data quantifying our
environment.
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